论文标题
SMAAT-UNET:使用小型关注 - Unet架构进行降水
SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet Architecture
论文作者
论文摘要
天气预报以数值天气预测为主导,该预测试图准确对大气的物理特性进行建模。数值天气预测的一个缺点是,它缺乏使用最新可用信息的短期预测的能力。通过使用数据驱动的神经网络方法,我们表明有可能立即产生准确的降水。为此,我们提出了SMAAT-UNET,这是一个有效的卷积神经网络,基于众所周知的UNET架构,配备了注意力模块和深度可分离的卷积。我们使用荷兰地区的降水图和法国云覆盖率的二元图像在现实生活数据集上评估我们的方法。实验结果表明,就预测性能而言,所提出的模型与其他检查的模型相当,而仅使用四分之一的可训练参数。
Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking the ability for short-term forecasts using the latest available information. By using a data-driven neural network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient convolutional neural networks-based on the well known UNet architecture equipped with attention modules and depthwise-separable convolutions. We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France. The experimental results show that in terms of prediction performance, the proposed model is comparable to other examined models while only using a quarter of the trainable parameters.