论文标题

迈向机器学习分析

Towards Machine Learning Analytics for Jet Substructure

论文作者

Kasieczka, Gregor, Marzani, Simone, Soyez, Gregory, Stagnitto, Giovanni

论文摘要

在过去的几年中,机器学习算法的迅速发展。尽管肯定会增强性能,但这些复杂的工具通常被视为黑盒,并可能会损害我们对正在研究的物理过程的理解。本文的目的是将第一步迈向应用粒子物理学专家知识以计算最佳决策功能的方向,并测试是否通过标准培训来实现它,从而使上述黑盒更透明。特别是,我们考虑了将夸克引起的夸克引起的喷气机区分出Gluon引起的二进制分类问题。我们构建了广泛使用的n套件的新版本,该版本具有比原始行为更简单的理论行为,同时维护(如果不超过歧视能力)。我们将这些新的可观察物输入最简单的神经网络,即由单个神经元或感知到的神经网络,并在领先的对数准确性方面分析了网络行为。我们能够确定在哪些情况下,感知器可以实现最佳性能。我们还将我们的分析结果与感知者的实际实施和更现实的神经网络进行了比较,并找到了很好的一致性。

The past few years have seen a rapid development of machine-learning algorithms. While surely augmenting performance, these complex tools are often treated as black-boxes and may impair our understanding of the physical processes under study. The aim of this paper is to move a first step into the direction of applying expert-knowledge in particle physics to calculate the optimal decision function and test whether it is achieved by standard training, thus making the aforementioned black-box more transparent. In particular, we consider the binary classification problem of discriminating quark-initiated jets from gluon-initiated ones. We construct a new version of the widely used N-subjettiness, which features a simpler theoretical behaviour than the original one, while maintaining, if not exceeding, the discrimination power. We input these new observables to the simplest possible neural network, i.e. the one made by a single neuron, or perceptron, and we analytically study the network behaviour at leading logarithmic accuracy. We are able to determine under which circumstances the perceptron achieves optimal performance. We also compare our analytic findings to an actual implementation of a perceptron and to a more realistic neural network and find very good agreement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源