论文标题

软机器人手臂的设计,控制和应用

Design, Control, and Applications of a Soft Robotic Arm

论文作者

Jiang, Hao, Wang, Zhanchi, Jin, Yusong, Chen, Xiaotong, Li, Peijin, Gan, Yinghao, Lin, Sen, Chen, Xiaoping

论文摘要

本文介绍了多段软机器人臂的设计,控制和应用。为了设计具有较大载荷能力的软臂,通过分析两种屈曲问题提出了几种设计原理,我们在其中提出了一种名为Honeycomb气动网络(HPN)的新型结构。提出了基于有限元方法(FEM)的参数优化方法,以优化HPN ARM设计参数。通过快速制造过程,制作了几种具有不同性能的原型,其中一个可以在3杆压力下达到3 kg的横向负载能力。接下来,考虑到不同的内部和外部条件,我们根据不同的模型精度开发三个控制器。具体而言,基于准确的模型,通过结合零件的恒定曲率(PCC)建模方法和机器学习方法来实现开环控制器。基于不准确的模型,使用估计的Jacobian的反馈控制器在3D空间中实现。使用强化学习来学习控制策略而不是模型的无模型控制器在2D平面中实现,并使用最少的培训数据实现。然后,在同一实验平台上比较了这三种控制方法,以探索不同条件下不同方法的适用性。最后,我们发现软臂可以通过其合规性极大地简化对交互任务的看法,计划和控制,这与刚性臂相比是其主要优势。通过在三种交互应用方案,人类机器人相互作用,自由空间交互任务以及限制空间相互作用任务中进行的大量实验,我们证明了软臂的潜在应用前景。

This paper presents the design, control, and applications of a multi-segment soft robotic arm. In order to design a soft arm with large load capacity, several design principles are proposed by analyzing two kinds of buckling issues, under which we present a novel structure named Honeycomb Pneumatic Networks (HPN). Parameter optimization method, based on finite element method (FEM), is proposed to optimize HPN Arm design parameters. Through a quick fabrication process, several prototypes with different performance are made, one of which can achieve the transverse load capacity of 3 kg under 3 bar pressure. Next, considering different internal and external conditions, we develop three controllers according to different model precision. Specifically, based on accurate model, an open-loop controller is realized by combining piece-wise constant curvature (PCC) modeling method and machine learning method. Based on inaccurate model, a feedback controller, using estimated Jacobian, is realized in 3D space. A model-free controller, using reinforcement learning to learn a control policy rather than a model, is realized in 2D plane, with minimal training data. Then, these three control methods are compared on a same experiment platform to explore the applicability of different methods under different conditions. Lastly, we figure out that soft arm can greatly simplify the perception, planning, and control of interaction tasks through its compliance, which is its main advantage over the rigid arm. Through plentiful experiments in three interaction application scenarios, human-robot interaction, free space interaction task, and confined space interaction task, we demonstrate the potential application prospect of the soft arm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源