论文标题

通过基于知识图的语义融合来改善对话推荐系统

Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion

论文作者

Zhou, Kun, Zhao, Wayne Xin, Bian, Shuqing, Zhou, Yuanhang, Wen, Ji-Rong, Yu, Jingsong

论文摘要

会话推荐系统(CRS)旨在通过交互式对话向用户推荐高质量的项目。尽管为CRS做出了几项努力,但仍有两个主要问题要解决。首先,对话数据本身缺乏足够的上下文信息,以准确了解用户的偏好。其次,自然语言表达和项目级用户偏好之间存在语义差距。为了解决这些问题,我们将面向单词的和实体的知识图(kg)结合在一起,以增强CRS中的数据表示,并采用相互信息最大化以使单词级别和实体级别的语义空间保持一致。根据对齐的语义表示,我们进一步开发了一个kg增强的推荐组件,以制定准确的建议,以及一个可以在响应文本中生成信息丰富的关键字或实体的kg增强对话框组件。广泛的实验证明了我们方法在推荐和对话任务上的表现方面的有效性。

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源