论文标题
两种模式高斯州的稳定纠缠
Stabilizing entanglement in two-mode Gaussian states
论文作者
论文摘要
我们在三种基准耗散模型中分析了纠缠两种模式高斯状态的稳定性:局部阻尼,耗散器设计以保持两种模式挤压状态和级联振荡器。在前两个模型中,我们确定可稳定纠缠的主要上限,而在最后一个模型中,可以稳定任意数量的纠缠量。这三个模型在最大化极限的纠缠中均表现出国家纠缠与纯度之间的权衡。我们的结果源自高斯系统的哈密顿独立稳定性条件。在这里,我们对这些条件的适用性提高了这些条件。
We analyze the stabilizability of entangled two-mode Gaussian states in three benchmark dissipative models: local damping, dissipators engineered to preserve two-mode squeezed states, and cascaded oscillators. In the first two models, we determine principal upper bounds on the stabilizable entanglement, while in the last model, arbitrary amounts of entanglement can be stabilized. All three models exhibit a tradeoff between state entanglement and purity in the entanglement maximizing limit. Our results are derived from the Hamiltonian-independent stabilizability conditions for Gaussian systems. Here, we sharpen these conditions with respect to their applicability.