论文标题
缺乏对称函数空间中的异构嵌入到操作员理想中
Lack of isomorphic embeddings of symmetric function spaces into operator ideals
论文作者
论文摘要
令$ e(0,1)$为$(0,1)$和$ C_F $上的对称空间,是Hilbert Space $ \ ell_2 $与对称序列空间$ f $相关的对称的紧凑型操作员的对称理想。我们给出了$ e(0,1)$和$ f $的几个标准,以便$ e(0,1)$不嵌入理想的$ c_f $,从而扩大了$ e(0,1)= l_p(0,1)$和$ f = \ ell_p $,$ 1 \ le p <\ le p <\ iffty $,Futhy Arazy anazy azy anazy anazy anazy anazy anazy anazy anazy anazy anazy anazy sensenstrausstra uskystra uskystra uskystra。
Let $E(0,1)$ be a symmetric space on $(0,1)$ and $C_F$ be a symmetric ideal of compact operators on the Hilbert space $\ell_2$ associated with a symmetric sequence space $F$. We give several criteria for $E(0,1)$ and $ F$ so that $E(0,1)$ does not embed into the ideal $C_F$, extending the result for the case when $E(0,1)=L_p(0,1)$ and $F=\ell_p $, $1\le p<\infty$, due to Arazy and Lindenstrauss.