论文标题
树突状肌动蛋白网络增长的连续模型
A continuum model for the growth of dendritic actin networks
论文作者
论文摘要
树突状肌动蛋白网络的聚合是细胞生物学中重要的机械过程的基础,例如韧性的突出,神经元树突中生长锥的推进,细胞内细胞内和病原体的细胞内转运等。这些机械功能所需的力是从肌动蛋白聚合的机械化学模型中得出的。大多数模型都集中在单一生长的细丝上,并且只有少数通过模拟解决细丝网络的聚合。在这里,我们提出了表面生长和细丝成核的连续模型,以描述树突状肌动蛋白网络的聚合。该模型在宏观应力,菌株和细丝密度方面描述了生长和弹性,而不是专注于单个丝。将聚合基础化的显微镜过程集成在表征细丝密度变化和生长表面传播的动力学定律中。该连续模型可以预测不同实验中肌动蛋白网络的演变。分析的一个关键结论是,现有的法律与单细丝的聚合速度有关,无法预测不断增长的网络的响应。因此,提出了一种与耗散不平等一致的新动力学定律,以捕获不同负载条件下树突状肌动蛋白网络的演变。该模型可以扩展到其他设置,涉及机械应力和聚合动力学之间的更复杂的相互作用,例如微管,胶原蛋白细丝,中间细丝和碳纳米管的网络的生长。
Polymerization of dendritic actin networks underlies important mechanical processes in cell biology such as the protrusion of lamellipodia, propulsion of growth cones in dendrites of neurons, intracellular transport of organelles and pathogens, among others. The forces required for these mechanical functions have been deduced from mechano-chemical models of actin polymerization; most models are focused on single growing filaments, and only a few address polymerization of filament networks through simulations. Here we propose a continuum model of surface growth and filament nucleation to describe polymerization of dendritic actin networks. The model describes growth and elasticity in terms of macroscopic stresses, strains and filament density rather than focusing on individual filaments. The microscopic processes underlying polymerization are subsumed into kinetic laws characterizing the change of filament density and the propagation of growing surfaces. This continuum model can predict the evolution of actin networks in disparate experiments. A key conclusion of the analysis is that existing laws relating force to polymerization speed of single filaments cannot predict the response of growing networks. Therefore a new kinetic law, consistent with the dissipation inequality, is proposed to capture the evolution of dendritic actin networks under different loading conditions. This model may be extended to other settings involving a more complex interplay between mechanical stresses and polymerization kinetics, such as the growth of networks of microtubules, collagen filaments, intermediate filaments and carbon nanotubes.