论文标题

在尊重分配不确定性和对抗数据的同时学习隐私和鲁棒性

Learning while Respecting Privacy and Robustness to Distributional Uncertainties and Adversarial Data

论文作者

Sadeghi, Alireza, Wang, Gang, Ma, Meng, Giannakis, Georgios B.

论文摘要

用于训练机器学习模型的数据可能是对抗性的,这是由对手构建的,以欺骗模型。挑战也是由于隐私,机密性而引起的,或者是由于数据收集和存储在多个学习者中时的法律限制而引起的,其中有些甚至可能具有“匿名”或不可靠的数据集。在这种情况下,在集中学习和联合学习设置中,考虑了训练参数模型的分布强大的优化框架。目的是赋予受过训练的模型对对抗操纵的输入数据或分配不确定性,例如培训和测试数据分布之间的不匹配,或者在不同工人中存储的数据集中的不匹配。为此,假定数据分布未知,并且位于围绕经验数据分布的一个瓦斯坦球体内。这项健壮的学习任务需要一个无限维度优化问题,这是具有挑战性的。利用强大的偶​​性结果,获得了替代物,为此开发了三种随机原始偶算法:i)带有$ε$ - accurate Oracle的随机近端梯度下降,这邀请了甲骨文来求解convex子问题; ii)随机近端梯度下降,它通过单个梯度上升步骤近似凸子问题的解; iii)一种具有分布强大的联合学习算法,该算法在存储数据的不同工人的本地解决了子问题。与经验风险最小化和联合学习方法相比,所提出的算法提供了鲁棒性,而开销很少。使用图像数据集的数值测试在几种现有的对抗攻击和分布不确定性下展示了所提出的算法的优点。

Data used to train machine learning models can be adversarial--maliciously constructed by adversaries to fool the model. Challenge also arises by privacy, confidentiality, or due to legal constraints when data are geographically gathered and stored across multiple learners, some of which may hold even an "anonymized" or unreliable dataset. In this context, the distributionally robust optimization framework is considered for training a parametric model, both in centralized and federated learning settings. The objective is to endow the trained model with robustness against adversarially manipulated input data, or, distributional uncertainties, such as mismatches between training and testing data distributions, or among datasets stored at different workers. To this aim, the data distribution is assumed unknown, and lies within a Wasserstein ball centered around the empirical data distribution. This robust learning task entails an infinite-dimensional optimization problem, which is challenging. Leveraging a strong duality result, a surrogate is obtained, for which three stochastic primal-dual algorithms are developed: i) stochastic proximal gradient descent with an $ε$-accurate oracle, which invokes an oracle to solve the convex sub-problems; ii) stochastic proximal gradient descent-ascent, which approximates the solution of the convex sub-problems via a single gradient ascent step; and, iii) a distributionally robust federated learning algorithm, which solves the sub-problems locally at different workers where data are stored. Compared to the empirical risk minimization and federated learning methods, the proposed algorithms offer robustness with little computation overhead. Numerical tests using image datasets showcase the merits of the proposed algorithms under several existing adversarial attacks and distributional uncertainties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源