论文标题

在Berkovich双重残留场和寓言模型上

On the Berkovich double residue fields and birational models

论文作者

Goto, Keita

论文摘要

正如可以考虑一个代数品种点的残留场一样,我们也可以考虑伯科维奇分析空间点的残留场。从代数意义上讲,该残基领域是一个估值字段。然后,我们可以将其残留场视为估值字段。我们称其为伯科维奇双重残留场。在本文中,我们考虑了代数品种的Berkovich分析的点$ x $,并确定$ x $的Berkovich Double残留场与Birational型号的$ x $中心的残留场联合。此外,我们具体地计算出任何准单词估值的伯科维奇双残留场。

Just as a residue field can be considered for a point of an algebraic variety, we can also consider a residue field for a point of a Berkovich analytic space. This residue field is a valuation field in the algebraic sense. Then we can consider its residue field as a valuation field. We call it the Berkovich double residue field at the point. In this paper, we consider a point $x$ of the Berkovich analytification of an algebraic variety and identify the Berkovich double residue field at $x$ with the union of the residue fields at the center of $x$ in birational models. Besides, we concretely compute the Berkovich double residue field for any quasi monomial valuation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源