论文标题
寄存器自动机和符号跟踪语言的myhill-nerode定理
A Myhill-Nerode Theorem for Register Automata and Symbolic Trace Languages
论文作者
论文摘要
我们为寄存器自动机(扩展有限状态计算机)提出了一个新的符号跟踪语义,该语义记录了运行期间发生的输入符号的顺序以及对本运行施加的输入参数的约束。我们的主要结果是将经典的myhill-nerode定理概括为此符号设置。我们的概括需要使用三个关系来捕获寄存器自动机的附加结构。位置等价$ \ equiv_l $捕获符号跟踪以同一位置结束的位置等价,过渡等价$ \ equiv_t $捕获了它们共享相同的最终过渡的捕获,并且部分等价关系$ \ equiv_r $捕获了符号值$ v $和$ v'$存储在同一寄存器中,并存储在同一寄存器中,$ w'$ w'$ W'$ W'$ W''如果关系$ \ equiv_l $,$ \ equiv_t $和$ \ equiv_r $存在,则将符号语言定义为规则,特别是满足某些条件,特别是它们都有有限的索引。我们表明,与寄存器自动机关联的符号语言是常规的,我们为每种常规的符号语言构造了接受此语言的寄存器自动机。我们的结果为灰色框学习算法的设置提供了基础,在这些设置中,可以使用例如,例如,可以使用例如,例如,使用例如,例如,可以使用例如。用于符号/一致性执行或毛茸茸的工具。我们认为,转到灰色盒子设置对于克服最新的黑盒学习算法的可伸缩性问题至关重要。
We propose a new symbolic trace semantics for register automata (extended finite state machines) which records both the sequence of input symbols that occur during a run as well as the constraints on input parameters that are imposed by this run. Our main result is a generalization of the classical Myhill-Nerode theorem to this symbolic setting. Our generalization requires the use of three relations to capture the additional structure of register automata. Location equivalence $\equiv_l$ captures that symbolic traces end in the same location, transition equivalence $\equiv_t$ captures that they share the same final transition, and a partial equivalence relation $\equiv_r$ captures that symbolic values $v$ and $v'$ are stored in the same register after symbolic traces $w$ and $w'$, respectively. A symbolic language is defined to be regular if relations $\equiv_l$, $\equiv_t$ and $\equiv_r$ exist that satisfy certain conditions, in particular, they all have finite index. We show that the symbolic language associated to a register automaton is regular, and we construct, for each regular symbolic language, a register automaton that accepts this language. Our result provides a foundation for grey-box learning algorithms in settings where the constraints on data parameters can be extracted from code using e.g. tools for symbolic/concolic execution or tainting. We believe that moving to a grey-box setting is essential to overcome the scalability problems of state-of-the-art black-box learning algorithms.