论文标题
Eisenstein系列扭曲Shintani Zeta功能
Eisenstein series twisted Shintani zeta function
论文作者
论文摘要
我们介绍了由真实的分析爱森斯坦系列扭曲的二元立方形式的前载体矢量空间的Zeta功能。我们证明了该Zeta功能的Meromorthic延续,并确定其杆子及其残基。当限制在不可还原的二元立方形式时,我们还确定了Zeta功能的极点和残基。该ZETA功能可用于证明立方环的晶格形状的等分分配。
We introduce the zeta function of the prehomogenous vector space of binary cubic forms, twisted by the real analytic Eisenstein series. We prove the meromorphic continuation of this zeta function and identify its poles and their residues. We also identify the poles and residues of the zeta function when restricted to irreducible binary cubic forms. This zeta function can be used to prove the equidistribution of the lattice shape of cubic rings.