论文标题

伽利亚电动力学的重新归一化

Renormalization of Galilean Electrodynamics

论文作者

Chapman, Shira, Di Pietro, Lorenzo, Grosvenor, Kevin T., Yan, Ziqi

论文摘要

我们研究了与2+1维中的schrödinger标量相连的galilean-crimaniant Abelian仪表理论的量子特性。在经典层面上,通过对相对论的麦克斯韦理论的零还原与3+1维度相对的标量场耦合的相对论麦克斯韦理论的无效,并与le-bellac和lévy-leblond的伽利利亚电气电磁密切相关。由于存在量规场的Galilean多重组中存在无尺寸的,量规不变的标量场,因此我们发现在量子水平上产生了无限数量的耦合。我们使用背景字段方法来解释如何系统地处理量子校正。由于非确定定理,发现量规耦合的β函数消失在扰动理论中的所有阶,导致连续的固定点家族保留了非相关的形式对称性。

We study the quantum properties of a Galilean-invariant abelian gauge theory coupled to a Schrödinger scalar in 2+1 dimensions. At the classical level, the theory with minimal coupling is obtained from a null-reduction of relativistic Maxwell theory coupled to a complex scalar field in 3+1 dimensions and is closely related to the Galilean electromagnetism of Le-Bellac and Lévy-Leblond. Due to the presence of a dimensionless, gauge-invariant scalar field in the Galilean multiplet of the gauge-field, we find that at the quantum level an infinite number of couplings is generated. We explain how to handle the quantum corrections systematically using the background field method. Due to a non-renormalization theorem, the beta function of the gauge coupling is found to vanish to all orders in perturbation theory, leading to a continuous family of fixed points where the non-relativistic conformal symmetry is preserved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源