论文标题
外部谐波场下的纯非中性血浆:平衡热力学和混乱
A pure non-neutral plasma under an external harmonic field: equilibrium thermodynamics and chaos
论文作者
论文摘要
由Ordenes-Huanca和Velazquez [JSTAT \ TextBf {093303}(2016)的先例研究的动机,我们解决了纯粹的非中性等离子体的简单模型的研究:一种与频率$ω$ω$ω$ $ω$ openter ofference of频率的相同非相同的无重力电荷粒子的系统。我们在连续近似的框架中执行平衡热统计分析。这项研究揭示了存在两个渐近极限的存在:零温度下已知的布里鲁因稳态,以及高温极限的谐波振荡器的气体。相关的热力学极限,$ n \ rightarrow+\ infty:u/n^{7/3} = const $证明了该模型的不扩展特征,它与在纽顿重力的情况下的非占用性点颗粒的自我塑料系统的热力学极限相吻合。之后,通过数值模拟分析了该模型的动力学。验证了同一宏观可观察物的热统计估计和时间期望值的一致性。系统混沌性是通过在已知\ emph {切线动力学}的框架中对Lyapunov指数的数值计算来解决的。 Lyapunov指数$λ$的温度依赖性在该模型的两个渐近限制中接近零,在它们之间的过境期间达到了最大值。当前模型的混乱非常强,因为它的速率比显微动力学的特征时间尺度$τ_{dyn} = 1/ω$。定性分析表明,由于其各自的特征时间尺度完全不同,因此无法解释这种强烈的混乱性,$τ_{ch} \ proptoτ_{dyn}/n^{1/4} $和$τ_{coll} \ {coll} \ proptoτ_{dyn} $ {dyn} $ {1/4} $。
Motivated by the precedent study of Ordenes-Huanca and Velazquez [JSTAT \textbf{093303} (2016)], we address the study of a simple model of a pure non-neutral plasma: a system of identical non-relativistic charged particles confined under an external harmonic field with frequency $ω$. We perform the equilibrium thermo-statistical analysis in the framework of continuum approximation. This study reveals the existence of two asymptotic limits: the known Brillouin steady state at zero temperature, and the gas of harmonic oscillators in the limit of high temperatures. The non-extensive character of this model is evidenced by the associated thermodynamic limit, $N\rightarrow+\infty: U/N^{7/3}=const$, which coincides with the thermodynamic limit of a self-gravitating system of non-relativistic point particles in presence of Newtonian gravitation. Afterwards, the dynamics of this model is analyzed through numerical simulations. It is verified the agreement of thermo-statistical estimations and the temporal expectation values of the same macroscopic observables. The system chaoticity is addressed via numerical computation of Lyapunov exponents in the framework of the known \emph{tangent dynamics}. The temperature dependence of Lyapunov exponent $λ$ approaches to zero in the two asymptotic limits of this model, reaching its maximum during the transit between them. The chaos of the present model is very strong, since its rate is faster than the characteristic timescale of the microscopic dynamics $τ_{dyn}=1/ω$. A qualitative analysis suggests that such a strong chaoticity cannot be explained in terms of collision events because of their respective characteristic timescales are quite different, $τ_{ch}\propto τ_{dyn}/N^{1/4}$ and $τ_{coll}\propto τ_{dyn}$.