论文标题
固定点定理和收敛定理,用于均匀凸出的Banach空间中广义的非专用映射
Fixed point theorems and convergence theorems for a generalized nonexpansive mapping in uniformly convex Banach spaces
论文作者
论文摘要
在本文中,我们证明了满足条件(DA)的映射的固定点(一种广义的非跨度映射),在满足Opial条件的Banach空间中弱紧凑的凸子集中。我们使用sahu([6])和thakur([10])的迭代方案来在均匀凸出的Banach空间中建立几个收敛定理,并举例说明该方案的收敛速度比[1]中的方案更快。
In this paper, we prove the existence of fixed points of mappings satisfying the condition (Da), a kind of generalized nonexpansive mappings, on a weakly compact convex subset in a Banach space satisfying Opial's condition. And we use Sahu([6]) and Thakur([10])'s iterative scheme to establish several convergence theorems in uniformly convex Banach spaces and give an example to show that this scheme converges faster than the scheme in [1]