论文标题

使用对抗变形场解释医学图像的疾病证据

Interpretation of Disease Evidence for Medical Images Using Adversarial Deformation Fields

论文作者

Lanfredi, Ricardo Bigolin, Schroeder, Joyce D., Vachet, Clement, Tasdizen, Tolga

论文摘要

深度学习模型的高复杂性与解释与特定疾病标签相关的证据的困难相关。这些信息对于建立模型并发现其偏见至关重要。到目前为止,自动化的深度学习可视化解决方案已经确定了分类器使用的图像区域,但是这些解决方案过于粗糙,太嘈杂,或者对图像的变化方式的表示有限。我们提出了一种新的方法,用于制定和提出用生成对抗网络(Defi-GAN)的疾病证据的空间解释,称为变形场。对抗训练的发电机会产生变形场,可修饰患病患者的图像,类似于健康患者的图像。我们验证了研究胸部X射线(CXR)和阿尔茨海默氏病(AD)证据的慢性阻塞性肺疾病(COPD)证据的方法。当在纵向数据中提取疾病证据时,我们会显示出令人信服的结果,以产生差异图。 Defi-GAN还强调了以前的方法和潜在偏见发现的疾病生物标志物,这些疾病可能有助于研究数据集和采用的学习方法。

The high complexity of deep learning models is associated with the difficulty of explaining what evidence they recognize as correlating with specific disease labels. This information is critical for building trust in models and finding their biases. Until now, automated deep learning visualization solutions have identified regions of images used by classifiers, but these solutions are too coarse, too noisy, or have a limited representation of the way images can change. We propose a novel method for formulating and presenting spatial explanations of disease evidence, called deformation field interpretation with generative adversarial networks (DeFI-GAN). An adversarially trained generator produces deformation fields that modify images of diseased patients to resemble images of healthy patients. We validate the method studying chronic obstructive pulmonary disease (COPD) evidence in chest x-rays (CXRs) and Alzheimer's disease (AD) evidence in brain MRIs. When extracting disease evidence in longitudinal data, we show compelling results against a baseline producing difference maps. DeFI-GAN also highlights disease biomarkers not found by previous methods and potential biases that may help in investigations of the dataset and of the adopted learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源