论文标题
Jacobi几何学和哈密顿力学:无单位方法
Jacobi Geometry and Hamiltonian Mechanics: the Unit-Free Approach
论文作者
论文摘要
我们提出了线条束几何形状和雅各比歧管的系统处理,并应用了文献中未指出的几何力学。我们精确地确定了将平滑流形和向量束的普通类别概括的类别,以解释缺乏首选单元的选择,在标准差异几何中,全球常数函数始终给出$ 1 $。这就是我们所说的“无单位”方法。在通过其符号图给出局部谎言括号的表征之后,我们应用了新型的分类语言来回顾雅各比流形和相关概念,例如Lichnerowicz支架和Jacobi代数。我们方法的主要优点是,雅各比几何形状被恢复为泊松几何学的直接无单位概括,所有熟悉的概念都以直接的方式翻译。然后,我们将这种形式主义应用于是否存在对哈密顿力学的无单位概括的问题。我们确定普通汉密尔顿力学的基本分类结构,以争辩说确实可以找到一个无单位的类似物。这项工作是研究尺寸结构的序幕,这是一种用于正式处理物理量和维度分析的一般数学框架的尝试。
We present a systematic treatment of line bundle geometry and Jacobi manifolds with an application to geometric mechanics that has not been noted in the literature. We precisely identify categories that generalise the ordinary categories of smooth manifolds and vector bundles to account for a lack of choice of a preferred unit, which in standard differential geometry is always given by the global constant function $1$. This is what we call the `unit-free' approach. After giving a characterisation of local Lie brackets via their symbol maps we apply our novel categorical language to review Jacobi manifolds and related notions such as Lichnerowicz brackets and Jacobi algebroids. The main advantage of our approach is that Jacobi geometry is recovered as the direct unit-free generalisation of Poisson geometry, with all the familiar notions translating in a straightforward manner. We then apply this formalism to the question of whether there is a unit-free generalisation of Hamiltonian mechanics. We identify the basic categorical structure of ordinary Hamiltonian mechanics to argue that it is indeed possible to find a unit-free analogue. This work serves as a prelude to the investigation of dimensioned structures, an attempt at a general mathematical framework for the formal treatment of physical quantities and dimensional analysis.