论文标题

更快的式嵌入速度的协作学习

Collaborative Learning for Faster StyleGAN Embedding

论文作者

Guan, Shanyan, Tai, Ying, Ni, Bingbing, Zhu, Feida, Huang, Feiyue, Yang, Xiaokang

论文摘要

由于基于多层样式的发电机,最近流行模型StyleGan最近的潜在代码学会了分离的表示形式。将给定的图像嵌入到stylegan的潜在空间中,可实现广泛的有趣的语义图像编辑应用程序。尽管以前的工作能够基于优化框架产生令人印象深刻的反转结果,但是遇到了效率问题。在这项工作中,我们提出了一个新颖的协作学习框架,该框架由一个有效的嵌入网络和基于优化的迭代器组成。一方面,随着培训的进展,嵌入网络为迭代器提供了合理的潜在代码初始化。另一方面,迭代器中更新的潜在代码又监督了嵌入式网络。最后,通过我们的嵌入式网络,可以有效地获得高质量的潜在代码。广泛的实验证明了我们工作的有效性和效率。

The latent code of the recent popular model StyleGAN has learned disentangled representations thanks to the multi-layer style-based generator. Embedding a given image back to the latent space of StyleGAN enables wide interesting semantic image editing applications. Although previous works are able to yield impressive inversion results based on an optimization framework, which however suffers from the efficiency issue. In this work, we propose a novel collaborative learning framework that consists of an efficient embedding network and an optimization-based iterator. On one hand, with the progress of training, the embedding network gives a reasonable latent code initialization for the iterator. On the other hand, the updated latent code from the iterator in turn supervises the embedding network. In the end, high-quality latent code can be obtained efficiently with a single forward pass through our embedding network. Extensive experiments demonstrate the effectiveness and efficiency of our work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源