论文标题

用空腔方法求解完全连接的球形$ p $ spin模型:与副本结果等效

Solving the fully-connected spherical $p$-spin model with the cavity method: equivalence with the replica results

论文作者

Gradenigo, Giacomo, Angelini, Maria Chiara, Leuzzi, Luca, Ricci-Tersenghi, Federico

论文摘要

球形$ p $ -spin是玻璃物理学的基本模型,这要归功于其通过复制方法可以实现的分析解决方案。不幸的是,复制方法具有一些缺点:很难应用于稀释的模型,并且超出其超出其假设尚不清楚。可以通过使用空腔方法来克服这两个缺点,但是,该方法需要在球形模型上谨慎地应用。在这里,我们展示了如何在完整的图表上编写球形$ p $ spin模型的空腔方程,包括在复制品对称(RS)ANSATZ(对应于信念传播)和1步复制对称性破坏(1RSB)ANSATZ(对应于调查传播)中。可以通过高斯(RS)和多元高斯(1RSB)Ansatz来求解空腔方程,以用于腔场的分布。我们计算出Ansatzes中的自由能,并检查结果是否与复制计算相同,预测在低温下的相位过渡到1RSB相。用空腔方法解决模型的优点很多。任何Ansatz对腔边缘的物理含义非常明显。空腔方法直接与局部数量的分布一起工作,这允许概括稀释图的方法。我们在这里介绍的是迈向稀释版的球形$ p $ spin模型的第一步,该版本是随机激光理论中的基本模型,并且是有趣的$ per〜se $ $的基本模型,这是经典全面连接的$ p $ p $ spin模型的易于模拟版本。

The spherical $p$-spin is a fundamental model for glassy physics, thanks to its analytic solution achievable via the replica method. Unfortunately the replica method has some drawbacks: it is very hard to apply to diluted models and the assumptions beyond it are not immediately clear. Both drawbacks can be overcome by the use of the cavity method, which, however, needs to be applied with care to spherical models. Here we show how to write the cavity equations for spherical $p$-spin models on complete graphs, both in the Replica Symmetric (RS) ansatz (corresponding to Belief Propagation) and in the 1-step Replica Symmetry Breaking (1RSB) ansatz (corresponding to Survey Propagation). The cavity equations can be solved by a Gaussian (RS) and multivariate Gaussian (1RSB) ansatz for the distribution of the cavity fields. We compute the free energy in both ansatzes and check that the results are identical to the replica computation, predicting a phase transition to a 1RSB phase at low temperatures. The advantages of solving the model with the cavity method are many. The physical meaning of any ansatz for the cavity marginals is very clear. The cavity method works directly with the distribution of local quantities, which allows to generalize the method to dilute graphs. What we are presenting here is the first step towards the solution of the diluted version of the spherical $p$-spin model, which is a fundamental model in the theory of random lasers and interesting $per~se$ as an easier-to-simulate version of the classical fully-connected $p$-spin model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源