论文标题

通过三个扭力生成不可定向表面的映射类组

Generating the mapping class group of a nonorientable surface by three torsions

论文作者

Leśniak, Marta, Szepietowski, Błażej

论文摘要

我们证明,映射类组$ \ MATHCAL {M}(N_G)$的封闭式不可方向的表面$ G $不同于4的4个扭转元素。此外,对于$ g = pk+2q(k-1)$或$ g = pk+g = pk+2q(k-1)+1 $的每一个偶数整数$ k \ ge 12 $和$ g $,其中$ p,q $是非阴性整数,$ p $是奇数,$ \ \ \ \ m nathcal {m}(m}(n_g)$由$ k $ kkate $ kkate $ knjate of thred conjate。对于Dehn Twists生成的$ \ Mathcal {M}(N_G)$的子组证明了类似的结果。

We prove that the mapping class group $\mathcal{M}(N_g)$ of a closed nonorientable surface of genus $g$ different than 4 is generated by three torsion elements. Moreover, for every even integer $k\ge 12$ and $g$ of the form $g=pk+2q(k-1)$ or $g=pk+2q(k-1)+1$, where $p,q$ are non-negative integers and $p$ is odd, $\mathcal{M}(N_g)$ is generated by three conjugate elements of order $k$. Analogous results are proved for the subgroup of $\mathcal{M}(N_g)$ generated by Dehn twists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源