论文标题

域自适应对象检测通过不对称的三路更快rcnn

Domain Adaptive Object Detection via Asymmetric Tri-way Faster-RCNN

论文作者

He, Zhenwei, Zhang, Lei

论文摘要

随着域差异的存在,常规对象检测模型不可避免地会遇到性能下降。最近提出了无监督的域自适应对象检测,以降低域之间的差异,其中源域富含标签,而目标域则是标签 - 敏锐的。现有模型遵循一个参数共享的暹罗结构,以进行对抗域的对齐,但是,该结构很容易导致源域的崩溃和失控风险,并给特征适应带来负面影响。主要原因是源和目标之间的标签不公平(不对称)使参数共享机制无法适应。因此,为了避免参数共享引起的源域塌陷风险,我们提出了一个不对称的三路(ATF),用于域自适应对象检测。我们的ATF模型具有两个独特的优点:1)由源标签监督的辅助网被部署以学习辅助目标特征,并同时保留源域的歧视,从而增强了域对齐的结构歧视(对象分类与边界盒回归)。 2)由主要网和独立辅助网组成的不对称结构基本上克服了共享的参数唤起源风险崩溃。保证了拟议的ATF检测器的适应安全性。在许多数据集上进行了广泛的实验,包括CityScapes,Foggy-CityScapes,Kitti,Sim10k,Pascal VOC,Clipart和WaterColor,都展示了我们方法的SOTA性能。

Conventional object detection models inevitably encounter a performance drop as the domain disparity exists. Unsupervised domain adaptive object detection is proposed recently to reduce the disparity between domains, where the source domain is label-rich while the target domain is label-agnostic. The existing models follow a parameter shared siamese structure for adversarial domain alignment, which, however, easily leads to the collapse and out-of-control risk of the source domain and brings negative impact to feature adaption. The main reason is that the labeling unfairness (asymmetry) between source and target makes the parameter sharing mechanism unable to adapt. Therefore, in order to avoid the source domain collapse risk caused by parameter sharing, we propose an asymmetric tri-way Faster-RCNN (ATF) for domain adaptive object detection. Our ATF model has two distinct merits: 1) A ancillary net supervised by source label is deployed to learn ancillary target features and simultaneously preserve the discrimination of source domain, which enhances the structural discrimination (object classification vs. bounding box regression) of domain alignment. 2) The asymmetric structure consisting of a chief net and an independent ancillary net essentially overcomes the parameter sharing aroused source risk collapse. The adaption safety of the proposed ATF detector is guaranteed. Extensive experiments on a number of datasets, including Cityscapes, Foggy-cityscapes, KITTI, Sim10k, Pascal VOC, Clipart and Watercolor, demonstrate the SOTA performance of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源