论文标题
Minkowski Space中的整个空间式超曲面,$σ_K$曲率
Entire spacelike hypersurfaces with constant $σ_k$ curvature in Minkowski space
论文作者
论文摘要
在本文中,我们证明了平滑,全部,严格的凸面,恒定的$σ_K$曲率超曲面,在Minkowski空间中具有规定的灯光方向。这相当于证明具有带有规定的高斯映射图像的光滑,全部,严格凸面,固定,固定$σ_K$曲率超出曲面的存在。我们还表明,没有任何完整的,凸面,严格的间距,常数$σ_K$曲率超出曲面。此外,我们将结果概括为\ cite {rwx},并严格构建凸面,固定,常数$σ_K$曲率超出表面,并具有有限的主曲率,其高斯映射的图像是单位球。
In this paper, we prove the existence of smooth, entire, strictly convex, spacelike, constant $σ_k$ curvature hypersurfaces with prescribed lightlike directions in Minkowski space. This is equivalent to prove the existence of smooth, entire, strictly convex, spacelike, constant $σ_k$ curvature hypersurfaces with prescribed Gauss map image. We also show that there doesn't exist any entire, convex, strictly spacelike, constant $σ_k$ curvature hypersurfaces. Moreover, we generalize the result in \cite{RWX} and construct strictly convex, spacelike, constant $σ_k$ curvature hypersurface with bounded principal curvature, whose image of the Gauss map is the unit ball.