论文标题

使用深度学习对相互作用表面的全球最佳分割

Globally Optimal Segmentation of Mutually Interacting Surfaces using Deep Learning

论文作者

Xie, Hui, Pan, Zhe, Zhou, Leixin, Zaman, Fahim A, Chen, Danny, Jonas, Jost B, Wang, Yaxing, Wu, Xiaodong

论文摘要

医学图像中多个表面的分割是一个具有挑战性的问题,由于频繁存在弱边界和相邻物体之间的相互影响而更加复杂。传统的基于图形的最佳表面分割方法通过在统一图模型中捕获各种表面先验的能力证明了其有效性。但是,它的功效在很大程度上取决于用于定义表面“善良”的表面成本的手工制作的功能。最近,由于其出色的特征学习能力,深度学习(DL)正在成为医学图像细分的强大工具。不幸的是,由于医学成像中训练数据的稀缺性,DL网络隐式学习目标表面的全球结构(包括表面相互作用)是不平化的。在这项工作中,我们建议在图形模型中参数化表面成本函数,并利用DL来学习这些参数。然后,通过最小化总表面成本,同时明确执行相互表面相互作用约束,从而同时检测多个最佳表面。优化问题是通过原始双重内部点方法解决的,该方法可以通过一层神经网络来实现,从而实现了整个网络的有效端到端培训。光谱结构域光学相干断层扫描(SD-OCT)视网膜层分割和血管内超声(IVUS)血管壁分割的实验表现出非常有希望的结果。所有源代码均公开以促进在这个方向上进行进一步的研究。

Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary and mutual influence between adjacent objects. The traditional graph-based optimal surface segmentation method has proven its effectiveness with its ability of capturing various surface priors in a uniform graph model. However, its efficacy heavily relies on handcrafted features that are used to define the surface cost for the "goodness" of a surface. Recently, deep learning (DL) is emerging as powerful tools for medical image segmentation thanks to its superior feature learning capability. Unfortunately, due to the scarcity of training data in medical imaging, it is nontrivial for DL networks to implicitly learn the global structure of the target surfaces, including surface interactions. In this work, we propose to parameterize the surface cost functions in the graph model and leverage DL to learn those parameters. The multiple optimal surfaces are then simultaneously detected by minimizing the total surface cost while explicitly enforcing the mutual surface interaction constraints. The optimization problem is solved by the primal-dual Internal Point Method, which can be implemented by a layer of neural networks, enabling efficient end-to-end training of the whole network. Experiments on Spectral Domain Optical Coherence Tomography (SD-OCT) retinal layer segmentation and Intravascular Ultrasound (IVUS) vessel wall segmentation demonstrated very promising results. All source code is public to facilitate further research at this direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源