论文标题
Anyon编织在一维线网络上的通用性能
Universal properties of anyon braiding on one-dimensional wire networks
论文作者
论文摘要
我们证明,电线网络上的任何人与2D中的人具有根本不同的编织特性。我们的分析揭示了网络上出乎意料的多种非亚伯辫子行为。编织的特征取决于称为网络的连接性的拓扑不变性。作为我们最引人注目的后果之一,模块化网络上的粒子在不同模块之间移动时可以改变其统计特性。但是,足够高度连接的网络已经重现了2D系统的编织属性。我们的分析是完全拓扑的,并且独立于Anyons的物理模型。
We demonstrate that anyons on wire networks have fundamentally different braiding properties than anyons in 2D. Our analysis reveals an unexpectedly wide variety of possible non-abelian braiding behaviours on networks. The character of braiding depends on the topological invariant called the connectedness of the network. As one of our most striking consequences, particles on modular networks can change their statistical properties when moving between different modules. However, sufficiently highly connected networks already reproduce braiding properties of 2D systems. Our analysis is fully topological and independent on the physical model of anyons.