论文标题
重新思考高效模型设计的通道尺寸
Rethinking Channel Dimensions for Efficient Model Design
论文作者
论文摘要
在有限的计算成本中设计有效的模型是具有挑战性的。我们认为,轻巧模型的准确性受到设计惯例的进一步限制:通道维度的阶段配置,看起来像网络阶段的分段线性函数。在本文中,我们研究有效的通道维度配置,比公约更好。为此,我们通过分析输出功能的等级来凭经验研究如何正确设计单层。然后,我们通过在计算成本限制下搜索有关通道配置的网络体系结构来研究模型的通道配置。基于研究,我们提出了一种简单而有效的通道配置,可以通过图层索引参数化。结果,我们提出的模型遵循通道参数化,在成像网分类和传输学习任务上取得了显着的性能,包括可可对象检测,可可实例分割和细粒分类。代码和Imagenet预估计的模型可在https://github.com/clovaai/rexnet上找到。
Designing an efficient model within the limited computational cost is challenging. We argue the accuracy of a lightweight model has been further limited by the design convention: a stage-wise configuration of the channel dimensions, which looks like a piecewise linear function of the network stage. In this paper, we study an effective channel dimension configuration towards better performance than the convention. To this end, we empirically study how to design a single layer properly by analyzing the rank of the output feature. We then investigate the channel configuration of a model by searching network architectures concerning the channel configuration under the computational cost restriction. Based on the investigation, we propose a simple yet effective channel configuration that can be parameterized by the layer index. As a result, our proposed model following the channel parameterization achieves remarkable performance on ImageNet classification and transfer learning tasks including COCO object detection, COCO instance segmentation, and fine-grained classifications. Code and ImageNet pretrained models are available at https://github.com/clovaai/rexnet.