论文标题

几乎不可压缩的矢量场的指定弯曲

Pointwise descriptions of nearly incompressible vector fields with bounded curl

论文作者

Clop, Albert, Sengupta, Banhirup

论文摘要

在这些几乎不可压缩的矢量字段中,$ {\ bf {v}}:{\ mathbb {r}}}^n \ to {\ mathbb {r}}^n $与$ | x | x | x | x | x | x | x | x | $增长在infination in Infinity,我们给出了$ \ operatat} cul cur { d {\ bf {v}} - d^t {\ bf {v}} $属于$ l^\ infty $。当$ n = 2 $时,我们可以进一步描述,但仍以刻度的术语描述,向量字段$ {\ bf {v}}}}:{\ mathbb {r}}}^2 \ to {\ mathbb {r}}^2 $美元

Among those nearly incompressible vector fields ${\bf{v}}:{\mathbb{R}}^n\to{\mathbb{R}}^n$ with $|x|\log|x|$ growth at infinity, we give a pointwise characterization of the ones for which $\operatorname{curl}{\bf{v}}= D{\bf{v}}-D^t{\bf{v}}$ belongs to $L^\infty$. When $n=2$ we can go further and describe, still in pointwise terms, the vector fields ${\bf{v}}:{\mathbb{R}}^2\to{\mathbb{R}}^2$ for which $|\operatorname{div}{\bf{v}}|+|\operatorname{curl}{\bf{v}}|\in L^\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源