论文标题
XXZ自旋环的纠缠熵的下限
Lower Bound to the Entanglement Entropy of the XXZ Spin Ring
论文作者
论文摘要
我们研究了在尺寸$ l $的环上定义的自由XXZ量子自旋模型,并表明属于真空基态上方第一个能量带的特征符号的两部分纠缠熵满足对数校正的区域法律。在此过程中,我们显示了对纤维操作员的组合 - 托马斯估计值,该估计值也可以应用于更通用的翻译不变图上的离散多个颗粒schrödinger操作员。
We study the free XXZ quantum spin model defined on a ring of size $L$ and show that the bipartite entanglement entropy of eigenstates belonging to the first energy band above the vacuum ground state satisfies a logarithmically corrected area law. Along the way, we show a Combes-Thomas estimate for fiber operators which can also be applied to discrete many-particle Schrödinger operators on more general translation-invariant graphs.