论文标题
liouville反思操作员,扬吉亚人和贝特·安萨兹(Bethe Ansatz)
Liouville reflection operator, affine Yangian and Bethe ansatz
论文作者
论文摘要
在这些注释中,我们通过Liouville反射操作员/Maulik-Okounkov $ r $ -Matrix来研究保形场理论的整合结构。我们讨论了$ rll $与$ \ mathfrak {gl}(1)$的Aggine Yangian的当前实现之间的关系。我们构建了与中间长波层次结构相关的通勤转移矩阵的家族,并为Nekrasov和Okounkov发现的光谱而得出了Bethe Ansatz方程,并由其中一位作者独立。我们的派生主要遵循Feigin,Jimbo,Miwa和Mukhin的衍生作用,但适用于保形案例。
In these notes we study integrable structure of conformal field theory by means of Liouville reflection operator/Maulik-Okounkov $R$-matrix. We discuss the relation between $RLL$ and current realization of the affine Yangian of $\mathfrak{gl}(1)$. We construct the family of commuting transfer matrices related to the Intermediate Long Wave hierarchy and derive Bethe ansatz equations for their spectra discovered by Nekrasov and Okounkov and independently by one of the authors. Our derivation mostly follows the one by Feigin, Jimbo, Miwa and Mukhin, but is adapted to the conformal case.