论文标题
使用低级MR-MOTUS从前瞻性底漆数据中从前瞻性下采样的K-Space数据的高时间分辨率下的非刚性3D运动估计
Non-rigid 3D motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank MR-MOTUS
论文作者
论文摘要
随着MR-LINAC的最新引入,MR-SCANNEN与LINAC进行了放射治疗,基于MR的运动估计已成为(回顾性地)在放射治疗期间(回顾性地)表征肿瘤和器官风险运动的兴趣。在此范围内,我们引入了低级MR-MOTU,这是一个回顾性重建时间分辨的非刚性3D+T运动场的框架,来自单个低分辨率参考图像,并前瞻性地不足下采样的K-Space数据在运动过程中获取。低级别MR-MOTU利用了内体运动中的时空相关性,并通过低级运动模型倒置,并颠倒将运动场直接与参考图像和K空间数据直接相关的信号模型。低级模型通过假设在空间和时间成分中的时空运动场进行分解,从而减少了自由度,记忆消耗和重建时间。使用低级别的MR-MOTU用于估计2D/3D腹部胸部扫描和3D头部扫描中的运动。使用黄金比径向读数获取数据。针对时间分辨和呼吸道分辨的图像重建,分别对重建的2D和3D呼吸运动场进行了验证,并在运动前后从完全采样的数据中获得的静态图像重建进行了针对静态图像重建的头部运动。结果表明,2D+T呼吸运动可以在每秒运动场7.6运动场时进行40.8运动场,3D+T呼吸运动的回顾性估计,每秒运动场和3D+T螺旋运动在9.3 Motion-neck tim-second。验证与图像重建表现出良好的一致性。所提出的框架可以估算时间分辨的非刚性3D运动场,从而可以表征放疗期间呼吸运动中的漂移以及呼吸运动中的周期内和周期模式,并且可以为实时MR引导放射疗法构成基础。
With the recent introduction of the MR-LINAC, an MR-scanner combined with a radiotherapy LINAC, MR-based motion estimation has become of increasing interest to (retrospectively) characterize tumor and organs-at-risk motion during radiotherapy. To this extent, we introduce low-rank MR-MOTUS, a framework to retrospectively reconstruct time-resolved non-rigid 3D+t motion-fields from a single low-resolution reference image and prospectively undersampled k-space data acquired during motion. Low-rank MR-MOTUS exploits spatio-temporal correlations in internal body motion with a low-rank motion model, and inverts a signal model that relates motion-fields directly to a reference image and k-space data. The low-rank model reduces the degrees-of-freedom, memory consumption and reconstruction times by assuming a factorization of space-time motion-fields in spatial and temporal components. Low-rank MR-MOTUS was employed to estimate motion in 2D/3D abdominothoracic scans and 3D head scans. Data were acquired using golden-ratio radial readouts. Reconstructed 2D and 3D respiratory motion-fields were respectively validated against time-resolved and respiratory-resolved image reconstructions, and the head motion against static image reconstructions from fully-sampled data acquired right before and right after the motion. Results show that 2D+t respiratory motion can be estimated retrospectively at 40.8 motion-fields-per-second, 3D+t respiratory motion at 7.6 motion-fields-per-second and 3D+t head-neck motion at 9.3 motion-fields-per-second. The validations show good consistency with image reconstructions. The proposed framework can estimate time-resolved non-rigid 3D motion-fields, which allows to characterize drifts and intra and inter-cycle patterns in breathing motion during radiotherapy, and could form the basis for real-time MR-guided radiotherapy.