论文标题

在Riemann流动中的Hamiltonian和Lagrangian BRST量化

Hamiltonian and Lagrangian BRST quantization in Riemann Manifold

论文作者

Pandey, Vipul Kumar

论文摘要

在Hyperface $ v _ {(n-1)} $上嵌入在欧几里得空间中的粒子运动的BRST量化$ r_n $是在哈密顿和拉格朗日形式主义中进行的。使用Batalin-Fradkin-Fradkina-tyutin(BFFT)形式主义,使用汉密尔顿分析获得的第二类限制被转换为一流的约束。然后使用BFV分析构建BRST对称性。我们给出了这类系统的简单示例。最后,我们在此(BFFT修改)系统的背景下讨论了Batalin-Vilkovisky形式主义。

The BRST quantization of particle motion on the hypersurface $V_{(N-1)}$ embedded in Euclidean space $R_N$ is carried out both in Hamiltonian and Lagrangian formalism. Using Batalin-Fradkin-Fradkina-Tyutin (BFFT) formalism, the second class constrained obtained using Hamiltonian analysis are converted into first class constraints. Then using BFV analysis the BRST symmetry is constructed. We have given a simple example of these kind of system. In the end we have discussed Batalin-Vilkovisky formalism in the context of this (BFFT modified) system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源