论文标题

用图神经网络处理可变维时间序列

Handling Variable-Dimensional Time Series with Graph Neural Networks

论文作者

Gupta, Vibhor, Narwariya, Jyoti, Malhotra, Pankaj, Vig, Lovekesh, Shroff, Gautam

论文摘要

物联网(IoT)技术的几种应用程序涉及从多个传感器中捕获数据,从而产生多传感器时间序列。此类多传感器或多元时间序列建模的现有神经网络方法假设固定输入维度或传感器数。这种方法在实际环境中可能会挣扎,在这种情况下,同一设备或设备(例如手机,可穿戴设备,发动机等)的不同实例都配有不同的安装传感器组合。我们考虑了此类多传感器时间序列的训练神经网络模型,由于可用性或在每个时间源序列上的其他传感器的安装,时间序列具有不同的输入维度。我们提出了一种适用于零拍传递学习的新型神经网络体系结构,可以在测试时与以前看不见的可用尺寸或传感器组合的多变量时间序列的鲁棒推断。通过调节基于核心神经网络的时间序列模型的“调节矢量”的层层来实现这种组合概括,该模型带有每个时间序列的传感器可用组合的信息。通过汇总与图形神经网络相对于时间序列中可用传感器的一组学习的“传感器嵌入向量”,可以获得该调节矢量。我们评估了有关公开可用活动识别和设备预后数据集的建议方法,并表明所提出的方法与深层复发性神经网络基线相比,可以更好地泛化。

Several applications of Internet of Things (IoT) technology involve capturing data from multiple sensors resulting in multi-sensor time series. Existing neural networks based approaches for such multi-sensor or multivariate time series modeling assume fixed input dimension or number of sensors. Such approaches can struggle in the practical setting where different instances of the same device or equipment such as mobiles, wearables, engines, etc. come with different combinations of installed sensors. We consider training neural network models from such multi-sensor time series, where the time series have varying input dimensionality owing to availability or installation of a different subset of sensors at each source of time series. We propose a novel neural network architecture suitable for zero-shot transfer learning allowing robust inference for multivariate time series with previously unseen combination of available dimensions or sensors at test time. Such a combinatorial generalization is achieved by conditioning the layers of a core neural network-based time series model with a "conditioning vector" that carries information of the available combination of sensors for each time series. This conditioning vector is obtained by summarizing the set of learned "sensor embedding vectors" corresponding to the available sensors in a time series via a graph neural network. We evaluate the proposed approach on publicly available activity recognition and equipment prognostics datasets, and show that the proposed approach allows for better generalization in comparison to a deep gated recurrent neural network baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源