论文标题

混合投影方法与反问题的回收利用

Hybrid Projection Methods with Recycling for Inverse Problems

论文作者

Chung, Julianne, de Sturler, Eric, Jiang, Jiahua

论文摘要

事实证明,迭代混合投影方法非常有效地解决大型线性逆问题,因为它们的固有正规化特性以及增加了适应性选择正则化参数的灵活性。在这项工作中,我们开发了基于Golub-kahan的混合投影方法,可以利用压缩和回收技术,以解决一系列广泛的反问题,否则内存需求或高计算成本可能会令人望而却步。对于具有许多未知参数并且需要许多迭代的问题,可以使用回收利用的混合投影方法来压缩和回收溶液基矢量,以减少必须存储的溶液基矢量数量,同时获得与标准方法可比的溶液准确性。如果需要重新定位,这也可能会大大降低计算成本。在其他情况下,例如流媒体数据问题或多个数据集的反问题,带回收利用的混合投影方法可用于有效整合先前计算的信息,以更快,更好地重建。提出的方法的其他好处是可以合并各种子空间选择和压缩技术,可以使用自动正则化参数选择的标准技术,并且可以以迭代方式多次应用该方法。理论结果表明,在合理条件下,我们提出的回收混合方法的正则化解决方案仍然接近标准混合方法的正则化解决方案,并揭示了所得投影矩阵之间的重要连接。图像处理中的数值示例显示了将回收利用与混合投影方法相结合的潜在优势。

Iterative hybrid projection methods have proven to be very effective for solving large linear inverse problems due to their inherent regularizing properties as well as the added flexibility to select regularization parameters adaptively. In this work, we develop Golub-Kahan-based hybrid projection methods that can exploit compression and recycling techniques in order to solve a broad class of inverse problems where memory requirements or high computational cost may otherwise be prohibitive. For problems that have many unknown parameters and require many iterations, hybrid projection methods with recycling can be used to compress and recycle the solution basis vectors to reduce the number of solution basis vectors that must be stored, while obtaining a solution accuracy that is comparable to that of standard methods. If reorthogonalization is required, this may also reduce computational cost substantially. In other scenarios, such as streaming data problems or inverse problems with multiple datasets, hybrid projection methods with recycling can be used to efficiently integrate previously computed information for faster and better reconstruction. Additional benefits of the proposed methods are that various subspace selection and compression techniques can be incorporated, standard techniques for automatic regularization parameter selection can be used, and the methods can be applied multiple times in an iterative fashion. Theoretical results show that, under reasonable conditions, regularized solutions for our proposed recycling hybrid method remain close to regularized solutions for standard hybrid methods and reveal important connections among the resulting projection matrices. Numerical examples from image processing show the potential benefits of combining recycling with hybrid projection methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源