论文标题

张量网络的边界的优化

Optimization at the boundary of the tensor network variety

论文作者

Christandl, Matthias, Gesmundo, Fulvio, Franca, Daniel Stilck, Werner, Albert H.

论文摘要

在量子多体系统的研究中,在分析和数字上构成了广泛使用的差异ANSATZ类别。众所周知,如果基础图包含一个循环,例如如预测的纠缠对状态(PEPS)中,给定键维的张量网络态的集合未关闭。它的关闭是张量网络品种。最近的工作表明,在该品种边界上的状态可以为身体感兴趣的状态产生更有效的表示,但是尚不清楚如何系统地查找和优化此类表示。我们通过定义一个新的ANSATZ类别的状态来解决此问题,该类别包括给定债券维度的张量网络边界处的状态。我们展示了如何通过稍微修改标准算法和张量网络代码来查找本班级的优化,以找到当地哈密顿量的基础状态。我们将这种新方法应用于不同的模型,并与标准张量网络方法相比,观察到有利的能量和运行时。

Tensor network states form a variational ansatz class widely used, both analytically and numerically, in the study of quantum many-body systems. It is known that if the underlying graph contains a cycle, e.g. as in projected entangled pair states (PEPS), then the set of tensor network states of given bond dimension is not closed. Its closure is the tensor network variety. Recent work has shown that states on the boundary of this variety can yield more efficient representations for states of physical interest, but it remained unclear how to systematically find and optimize over such representations. We address this issue by defining a new ansatz class of states that includes states at the boundary of the tensor network variety of given bond dimension. We show how to optimize over this class in order to find ground states of local Hamiltonians by only slightly modifying standard algorithms and code for tensor networks. We apply this new method to a different of models and observe favorable energies and runtimes when compared with standard tensor network methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源