论文标题
基于路径积分的卷积和图形神经网络的合并
Path Integral Based Convolution and Pooling for Graph Neural Networks
论文作者
论文摘要
图形神经网络(GNN)将传统神经网络的功能扩展到图形结构化数据。与CNN相似,图形卷积和合并的优化设计是成功的关键。借用物理学的想法,我们提出了一个基于路径积分的图形神经网络(PAN),以用于图形上的分类和回归任务。具体而言,我们考虑了一个卷积操作,该操作涉及每个路径,将消息发送者和接收器链接起来,具体取决于路径长度,这对应于最大熵随机步行。它将图形拉普拉斯元素推广到一个新的过渡矩阵,我们称之为最大熵过渡(Met)矩阵,该基质源自路径积分形式主义。重要的是,MET基质的对角线条目与子图中心性直接相关,因此提供了自然而自适应的合并机制。 PAN提供了一个多功能框架,可以针对具有不同尺寸和结构的不同图形数据定制。我们可以将大多数现有的GNN体系结构视为PAN的特殊情况。实验结果表明,PAN可以在各种图形分类/回归任务上实现最新的性能,包括我们提出的统计机制的新基准数据集,我们建议在物理科学中提高GNN的应用。
Graph neural networks (GNNs) extends the functionality of traditional neural networks to graph-structured data. Similar to CNNs, an optimized design of graph convolution and pooling is key to success. Borrowing ideas from physics, we propose a path integral based graph neural networks (PAN) for classification and regression tasks on graphs. Specifically, we consider a convolution operation that involves every path linking the message sender and receiver with learnable weights depending on the path length, which corresponds to the maximal entropy random walk. It generalizes the graph Laplacian to a new transition matrix we call maximal entropy transition (MET) matrix derived from a path integral formalism. Importantly, the diagonal entries of the MET matrix are directly related to the subgraph centrality, thus providing a natural and adaptive pooling mechanism. PAN provides a versatile framework that can be tailored for different graph data with varying sizes and structures. We can view most existing GNN architectures as special cases of PAN. Experimental results show that PAN achieves state-of-the-art performance on various graph classification/regression tasks, including a new benchmark dataset from statistical mechanics we propose to boost applications of GNN in physical sciences.