论文标题

平均引理的能量方法

An energy method for averaging lemmas

论文作者

Arsénio, Diogo, Lerner, Nicolas

论文摘要

这项工作引入了一种新的方法,以平均动力学理论。基于经典能量方法,这种方法在动力学传输方程中提供了强大的二元性原理,该原理允许将经典平均引理自然扩展到以前未知的情况下,密度和源术语属于二元空间。更一般而言,这种动力学二元性原理会产生规律性的结果,在这种情况下,可以在动力学传输方程中某个地方丢失规律性或在其他地方的相反增益。同样,依靠证明不等式而不是构造确切的参数看起来更简单,更健壮。 本文的结果是从功能分析的角度引入的。它们是由动力学传输方程的抽象规则性理论的动机。但是,我们可能还记得,平均引理的速度对动力学理论及其相关的物理模型具有深远的影响。特别地,这种结果的精确表述有可能导致重要的应用,例如,玻尔兹曼型方程的重新构度的规律性以及气体动力学的动力学制剂。

This work introduces a new approach to velocity averaging lemmas in kinetic theory. This approach -- based upon the classical energy method -- provides a powerful duality principle in kinetic transport equations which allows for a natural extension of classical averaging lemmas to previously unknown cases where the density and the source term belong to dual spaces. More generally, this kinetic duality principle produces regularity results where one can trade a loss of regularity or integrability somewhere in the kinetic transport equation for a suitable opposite gain elsewhere. Also, it looks simpler and more robust to rely on proving inequalities instead of constructing exact parametrices. The results in this article are introduced from a functional analytic point of view. They are motivated by the abstract regularity theory of kinetic transport equations. However, we may recall that velocity averaging lemmas have profound implications in kinetic theory and its related physical models. In particular, the precise formulation of such results has the potential to lead to important applications to the regularity of renormalizations of Boltzmann-type equations, as well as kinetic formulations of gas dynamics, for instance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源