论文标题

转化边界对的Weyl家族

Weyl families of transformed boundary pairs

论文作者

Jursenas, R.

论文摘要

令$(\ mathfrak {l},γ)$为与封闭的对称线性关系$ t $相关联的等距边界对。令$m_γ$为对应于$(\ mathfrak {l},γ)$的Weyl家族。我们应对两个主要主题。首先,由于$m_γ$不必(概括)nevanlinna,因此对于某些$ z \ in \ mathbb {c} \ smalleStminus \ mathbb {r} $而言,闭合和线性关系$m_γ(z)$的伴随表征,成为一项非琐事。关于$m_γ(z)$作为$γ$引起的$ zi $的(shmul'yan)转换,我们给出了$ \ overline {m_γ(z)} \ subseteq \ subseteq \ subseteq \ overline {m_ _ {\overlineγ}(z)} $的条件,以固定和unagepline $ m____________ \ n exectaute nline {\overlineγ}(z)} $。作为一个应用程序,我们询问何时与$ t^+$的单一边界对关联的主要变换的分解集是非空的。根据$M_γ(z)$接近的标准,我们为答案提供了足够的条件。例如,例如,如果$ t $是Pontryagin空间中的标准线性关系,那么Weyl家族$M_γ$对应于边界关系$γ$ for $ t^+$是一个广义的Nevanlinna家族。在第二个主题中,我们表征了转换的边界对$(\ mathfrak {l}^\ prime,γ^\ prime)$,其weyl family $ m_ {γ^\ prime} $。转换方案是$γ^\ prime =γv^{ - 1} $或$γ^\ prime =vγ$,带有合适的线性关系$ v $。导致该方向包括但不限于以下方向:$(\ mathfrak {l},γ)$和$(\ Mathfrak {l}^\ prime,γ^\ prime)$之间的1-1对应关系; $ m_ {γ^\ prime}-m_γ$的公式,用于普通边界三重和标准统一操作员$ v $;从等距边界三重$(\ mathfrak {l},γ_0,γ_1)$构建准边界三重,并用$ \kerγ= t $和$ t_0 = t_0 = t^*_ 0 $。

Let $(\mathfrak{L},Γ)$ be an isometric boundary pair associated with a closed symmetric linear relation $T$ in a Krein space $\mathfrak{H}$. Let $M_Γ$ be the Weyl family corresponding to $(\mathfrak{L},Γ)$. We cope with two main topics. First, since $M_Γ$ need not be (generalized) Nevanlinna, the characterization of the closure and the adjoint of a linear relation $M_Γ(z)$, for some $z\in\mathbb{C}\smallsetminus\mathbb{R}$, becomes a nontrivial task. Regarding $M_Γ(z)$ as the (Shmul'yan) transform of $zI$ induced by $Γ$, we give conditions for the equality in $\overline{M_Γ(z)}\subseteq\overline{M_{\overlineΓ}(z)}$ to hold and we compute the adjoint $M_{\overlineΓ}(z)^*$. As an application we ask when the resolvent set of the main transform associated with a unitary boundary pair for $T^+$ is nonempty. Based on the criterion for the closeness of $M_Γ(z)$ we give a sufficient condition for the answer. It follows, for example, that, if $T$ is a standard linear relation in a Pontryagin space then the Weyl family $M_Γ$ corresponding to a boundary relation $Γ$ for $T^+$ is a generalized Nevanlinna family. In the second topic we characterize the transformed boundary pair $(\mathfrak{L}^\prime,Γ^\prime)$ with its Weyl family $M_{Γ^\prime}$. The transformation scheme is either $Γ^\prime=ΓV^{-1}$ or $Γ^\prime=VΓ$ with suitable linear relations $V$. Results in this direction include but are not limited to: a 1-1 correspondence between $(\mathfrak{L},Γ)$ and $(\mathfrak{L}^\prime,Γ^\prime)$; the formula for $M_{Γ^\prime}-M_Γ$, for an ordinary boundary triple and a standard unitary operator $V$; construction of a quasi boundary triple from an isometric boundary triple $(\mathfrak{L},Γ_0,Γ_1)$ with $\kerΓ=T$ and $T_0=T^*_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源