论文标题

渐近多重性和Monge-ampère群众(塞巴斯蒂安·布克科姆(SébastienBoucksom)附录)

Asymptotic multiplicities and Monge-Ampère masses (with an appendix by Sébastien Boucksom)

论文作者

Kim, Dano, Rashkovskii, Alexander

论文摘要

EIN,Lazarsfeld和Smith询问“平等”是否在平滑的复合品种上具有零维理想的分级系统之间的两个samuel型渐近倍增性。我们通过表明“平等”等同于Demailly强大的连续性属性在plurisubharmonic函数近似下的残留Monge-ampère质量收敛的特定情况上,发现了这个问题与复杂分析的联系。另一方面,在本文的附录中,塞巴斯蒂安·布克科姆(SébastienBoucksom)使用b滴度的交集理论,给出了“平等”的代数证明。然后,我们使用这些表明DeMailly的强大连续性具有新的重要类别功能。

Ein, Lazarsfeld and Smith asked whether `equality' holds between two Samuel type asymptotic multiplicities for a graded system of zero-dimensional ideals on a smooth complex variety. We find a connection of this question to complex analysis by showing that the `equality' is equivalent to a particular case of Demailly's strong continuity property on the convergence of residual Monge-Ampère masses under approximation of plurisubharmonic functions. On the other hand, in an appendix of this paper, Sébastien Boucksom gives an algebraic proof of the `equality' in general, using the intersection theory of b-divisors. We then use these to show that Demailly's strong continuity holds for a new important class of plurisubharmonic functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源