论文标题

受限优化方法通过量子准备方法提供了卓越的经典性能,用于图形分区

Constrained-optimization Approach Delivers Superior Classical Performance for Graph Partitioning via Quantum-ready Method

论文作者

Chukwu, Uchenna, Dridi, Raouf, Berwald, Jesse, Booth, Michael, Dawson, John, Le, DeYung, Wainger, Mark, Reinhardt, Steven P.

论文摘要

图形分区是一组重要的计算强大(NP-HARD)图形问题之一,该问题转化为离散的约束优化。我们通过两种不同的量子就绪方法对问题进行了对解决方案,以了解每种方法的优缺点。首先,我们使用纯粹经典地运行的一流的Qubo采样器,通过最著名的QUBO公式提出并将问题提出为二次无约束的二进制优化(QUBO)问题。其次,我们以较高级别的一组约束和目标函数来提出问题,并用约束优化的采样器对其进行采样(在内部通过Qubos还经典地采样了该问题)。我们发现,这两种方法通常都比专用的古典图形分区者提供更好的分区。此外,我们发现,在不了解图形分区问题的情况下,约束优化方法通常能够在更少的时间内提供更好的分区。 从图形分区中恢复自身后,一个关键的有争议的问题是,定制算法或一般工具是否更有可能将QC的功能传递给真实世界用户。这些结果在这个问题上伴随着这些问题,尽管它们需要确认其他问题和实例,并用QC替换低级采样器。尽管如此,该早期证据仍然支持这样的主张,即通用工具将对一系列问题产生重大贡献,从而扩大QC的影响。该好处与所使用的低级采样器(无论是软件还是QC)无关,因此可以增强对高级优化的更多工作的需求。今天的云中,此类软件的早期版本可在云中获得,为某些问题提供了卓越的经典性能,使量子前锋组织现在可以迁移到量子准备的方法。

Graph partitioning is one of an important set of well-known compute-intense (NP-hard) graph problems that devolve to discrete constrained optimization. We sampled solutions to the problem via two different quantum-ready methods to understand the pros and cons of each method. First we formulated and sampled the problem as a quadratic unconstrained binary optimization (QUBO) problem, via the best known QUBO formulation, using a best-in-class QUBO sampler running purely classically. Second, we formulated the problem at a higher level, as a set of constraints and an objective function, and sampled it with a constrained-optimization sampler (which internally samples the problem via QUBOs also sampled classically). We find that both approaches often deliver better partitions than the purpose-built classical graph partitioners. Further, we find that the constrained-optimization approach is often able to deliver better partitions in less time than the bespoke-QUBO approach, without knowledge of the graph-partitioning problem. Stepping back from graph partitioning itself, one key controversial question is whether bespoke algorithms or general tools are more likely to deliver the power of QCs to real-world users. These results bear on that question, though they require confirmation on other problems and instances as well as replacement of the low-level sampler by a QC. Still, this early evidence supports the proposition that general tools will contribute significantly to a range of problems, expanding the impact of QCs. This benefit is independent of the low-level sampler employed, whether software or QC, so reinforces the need for more work on high-level optimization. An early version of such software is commercially available in the cloud today, delivering superior classical performance for some problems, enables quantum-forward organizations to migrate to quantum-ready methods now.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源