论文标题

用禁止的子图片分裂

Splits with forbidden subgraphs

论文作者

Axenovich, Maria, Martin, Ryan R.

论文摘要

在本说明中,我们修复了图$ h $,并询问可以“拆分”一个大小$ n $的每个顶点,以使结果图为$ h $ free。形式上:图是$(n,k)$ - 图形,如果其顶点集是最多$ k $的$ n $零件的成对差异,则每个两个不同的部分之间都有边缘。让 $ f(n,h)= \ min \ {k \ in \ mathbb n:\ mbox {有一个$(n,k)$ - 图$ g $,以至于$ h \ not \ not \ subseteq g $} \}。 $$ Barbanera和Ueckerdt观察到$ f(n,h)= 2 $对于任何图形$ h $,不是双分部分。如果图$ h $是两部分,并且具有明确定义的Turán指数,即$ {\ rm ex}(n,h)=θ(n^r)对于某些$ r $,我们表明$ω(n^{2/r -1})= f(n,r -1})= f(n,h)= f(n,h)= o(n^n^n^n^n^{2/r-1} $ r-1} \ r-r-r-n} =我们将此结果扩展到所有两分图的图形,上层和下图恩指数没有太大差异。此外,我们证明$ f(n,k_ {2,t})=θ(n^{1/3})$对于任何固定的$ t $。

In this note, we fix a graph $H$ and ask into how many vertices can each vertex of a clique of size $n$ can be "split" such that the resulting graph is $H$-free. Formally: A graph is an $(n,k)$-graph if its vertex sets is a pairwise disjoint union of $n$ parts of size at most $k$ each such that there is an edge between any two distinct parts. Let $$ f(n,H) = \min \{k \in \mathbb N : \mbox{there is an $(n,k)$-graph $G$ such that $H\not\subseteq G$}\} . $$ Barbanera and Ueckerdt observed that $f(n, H)=2$ for any graph $H$ that is not bipartite. If a graph $H$ is bipartite and has a well-defined Turán exponent, i.e., ${\rm ex}(n, H) = Θ(n^r)$ for some $r$, we show that $Ω(n^{2/r -1}) = f(n, H) = O (n^{2/r-1} \log ^{1/r} n)$. We extend this result to all bipartite graphs for which an upper and a lower Turán exponents do not differ by much. In addition, we prove that $f(n, K_{2,t}) =Θ(n^{1/3})$ for any fixed $t$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源