论文标题
3DMotion-NET:学习3D运动预测的连续流动功能
3DMotion-Net: Learning Continuous Flow Function for 3D Motion Prediction
论文作者
论文摘要
在本文中,我们处理问题,以预测前两个连续帧的3D对象扫描的未来3D运动。先前的方法主要集中于骨骼形式的稀疏运动预测。在本文中,我们专注于预测3D点云中的密集3D运动。为了解决这个问题,我们提出了一种自我监督的方法,该方法利用了深度神经网络的力量学习3D点云的连续流函数,可以预测时间在时间一致的未来动作,并自然地在同一时间之间发出对应关系。更具体地说,在我们的方法中,为了消除在3D点云序列上定义离散点卷积以编码空间和时间信息的离散点卷积的过程,我们引入了可学习的潜在代码,以表示在模型训练过程中优化的时间感知的形状描述符。此外,提出了一个在时间上一致的运动形态,以学习一个连续的流场,该流场从当前框架到下一帧变形了3D扫描。我们对D-FAST,SCAPE和TOSCA基准数据集进行了广泛的实验,结果表明,我们的方法能够处理时间上不一致的输入,并产生一致的未来3D运动,而不需要地面真相监督。
In this paper, we deal with the problem to predict the future 3D motions of 3D object scans from previous two consecutive frames. Previous methods mostly focus on sparse motion prediction in the form of skeletons. While in this paper we focus on predicting dense 3D motions in the from of 3D point clouds. To approach this problem, we propose a self-supervised approach that leverages the power of the deep neural network to learn a continuous flow function of 3D point clouds that can predict temporally consistent future motions and naturally bring out the correspondences among consecutive point clouds at the same time. More specifically, in our approach, to eliminate the unsolved and challenging process of defining a discrete point convolution on 3D point cloud sequences to encode spatial and temporal information, we introduce a learnable latent code to represent the temporal-aware shape descriptor which is optimized during model training. Moreover, a temporally consistent motion Morpher is proposed to learn a continuous flow field which deforms a 3D scan from the current frame to the next frame. We perform extensive experiments on D-FAUST, SCAPE and TOSCA benchmark data sets and the results demonstrate that our approach is capable of handling temporally inconsistent input and produces consistent future 3D motion while requiring no ground truth supervision.