论文标题
分区中T钩的分布特性
Distribution properties for t-hooks in partitions
论文作者
论文摘要
分区,分区函数$ p(n)$以及其弗雷斯·尤恩(Ferrers-Young)图的钩子长度是组合学,数理论和表示理论中的重要对象。对于正整数$ n $和$ t $,我们研究$ p_t^e(n)$(分别为$ p_t^o(n)$),$ n $的分区数,均匀(分别为奇数)$ t $ hooks。我们研究了比率$ p_t^e(n)/p(n)$的限制行为,这也给出了$ p_t^o(n)/p(n)$,因为$ p_t^e(n) + p_t^0(n)= p(n)$。对于$ t $,我们表明,$ \ lim \ limits_ {n \ to \ infty} \ dfrac {p_t^e(n)} {p(n)} = \ dfrac {1} {1} {2} {2} {2} {2} {2},$ t $,对于奇数$ t $,我们建立了非均匀分布$ \ lim \ lim \ lim \ limiits_ \ dfrac {p^e_t(n)} {p(n)} = \ begin {cases} \ dfrac {1} {2} {2} + \ dfrac {1} {1} {2^{(t + 1)/2}}}}} \ dfrac {1} {2^{(T+1)/2}}&\ text {否则。} \ end end {cases} $$使用rademacher circle方法,我们找到了$ p_t^e(n)$和$ p_t^o(n)$(n)$的$ p_t^e(n)$的确切公式,且此精确的配方可用于这些分布属性。我们还表明,对于足够大的$ n $,$ p_t^e(n)-p_t^o(n)$的标志是周期性的。
Partitions, the partition function $p(n)$, and the hook lengths of their Ferrers-Young diagrams are important objects in combinatorics, number theory and representation theory. For positive integers $n$ and $t$, we study $p_t^e(n)$ (resp. $p_t^o(n)$), the number of partitions of $n$ with an even (resp. odd) number of $t$-hooks. We study the limiting behavior of the ratio $p_t^e(n)/p(n)$, which also gives $p_t^o(n)/p(n)$ since $p_t^e(n) + p_t^0(n) = p(n)$. For even $t$, we show that $$\lim\limits_{n \to \infty} \dfrac{p_t^e(n)}{p(n)} = \dfrac{1}{2},$$ and for odd $t$ we establish the non-uniform distribution $$\lim\limits_{n \to \infty} \dfrac{p^e_t(n)}{p(n)} = \begin{cases} \dfrac{1}{2} + \dfrac{1}{2^{(t+1)/2}} & \text{if } 2 \mid n, \\ \\ \dfrac{1}{2} - \dfrac{1}{2^{(t+1)/2}} & \text{otherwise.} \end{cases}$$ Using the Rademacher circle method, we find an exact formula for $p_t^e(n)$ and $p_t^o(n)$, and this exact formula yields these distribution properties for large $n$. We also show that for sufficiently large $n$, the signs of $p_t^e(n) - p_t^o(n)$ are periodic.