论文标题
使用自我监督的边缘特征和图形神经网络,了解SARS-COV-2感染和共同严重程度的洞察力。
Gaining Insight into SARS-CoV-2 Infection and COVID-19 Severity Using Self-supervised Edge Features and Graph Neural Networks
论文作者
论文摘要
对SARS-COV-2如何可变感染和引起严重的Covid-19的分子和细胞的理解仍然是开发干预措施以结束大流行的瓶颈。我们试图通过鉴定与SARS-COV-2感染和COVID-19的严重程度相关的转录组模式和细胞类型来研究SARS-COV-2感染和COVID-19的严重程度的生物学。为此,我们开发了一种新方法来产生自我监督的边缘功能。我们提出了一个建立在图形注意力网络(GAT)上的模型,使用自我监督的学习创建边缘功能,并通过SET变压器摄入这些边缘功能。鉴于其转录组,该模型在预测单个细胞的疾病状态方面取得了重大改善。我们将模型应用于SARS-COV-2感染的肺器官的单细胞RNA测序数据集和COVID-19患者的支气管肺泡灌洗液样品,并通过我们的模型在两个数据集上实现了最先进的性能。然后,我们从可解释的AI(XAI)领域借用,以识别跨时间和中度与严重的Covid-19疾病区分旁观者与受感染细胞的特征(基因)和细胞类型。据我们所知,这代表了深度学习在识别SARS-COV-2感染和使用单细胞OMICS数据的SARS-COV-2感染和COVID-19的严重程度的首次应用。
A molecular and cellular understanding of how SARS-CoV-2 variably infects and causes severe COVID-19 remains a bottleneck in developing interventions to end the pandemic. We sought to use deep learning to study the biology of SARS-CoV-2 infection and COVID-19 severity by identifying transcriptomic patterns and cell types associated with SARS-CoV-2 infection and COVID-19 severity. To do this, we developed a new approach to generating self-supervised edge features. We propose a model that builds on Graph Attention Networks (GAT), creates edge features using self-supervised learning, and ingests these edge features via a Set Transformer. This model achieves significant improvements in predicting the disease state of individual cells, given their transcriptome. We apply our model to single-cell RNA sequencing datasets of SARS-CoV-2 infected lung organoids and bronchoalveolar lavage fluid samples of patients with COVID-19, achieving state-of-the-art performance on both datasets with our model. We then borrow from the field of explainable AI (XAI) to identify the features (genes) and cell types that discriminate bystander vs. infected cells across time and moderate vs. severe COVID-19 disease. To the best of our knowledge, this represents the first application of deep learning to identifying the molecular and cellular determinants of SARS-CoV-2 infection and COVID-19 severity using single-cell omics data.