论文标题

关于阻尼/驱动的非线性Schrödinger方程(扩展版)的能量转移到高频

On The Energy Transfer To High Frequencies In The Damped/Driven Nonlinear Schrödinger Equation (Extended Version)

论文作者

Huang, Guan, Kuksin, Sergei

论文摘要

我们考虑在$ n $ -cube $ k^{n} \ subset \ subset \ mathbb {r}^n $,$ n $中,在$ n $ -cube $ k^{n} \ subset $ k^{ k^{n},\ quad u | _ {\ partial k^{n}} = 0,\quadν> 0,\],其中$η(t,x)$是一种随机的力,是白色的,在太空中是白色的。众所周知,解决方案的Sobolev规范满足$ \ | u(t)\ | _m^2 \ lecν^{ - m},$均匀地在$ t \ ge0 $和$ν> 0 $中。在这项工作中,我们证明,对于小$ν> 0 $和任何初始数据,概率很大,Sobolev规范$ \ | u(t,\ cdot)\ | _m $ a $ m> 2 $的解决方案的$ m> $至少与$ν^{ - κ_{n,m}} $的顺序至少相对于$ n,m} $ nime Inker $ \ MATHCAL {O}(\ frac {1}ν)$。

We consider a damped/driven nonlinear Schrödinger equation in an $n$-cube $K^{n}\subset\mathbb{R}^n$, $n$ is arbitrary, under Dirichlet boundary conditions \[ u_t-νΔu+i|u|^2u=\sqrtνη(t,x),\quad x\in K^{n},\quad u|_{\partial K^{n}}=0, \quad ν>0, \] where $η(t,x)$ is a random force that is white in time and smooth in space. It is known that the Sobolev norms of solutions satisfy $ \| u(t)\|_m^2 \le Cν^{-m}, $ uniformly in $t\ge0$ and $ν>0$. In this work we prove that for small $ν>0$ and any initial data, with large probability the Sobolev norms $\|u(t,\cdot)\|_m$ of the solutions with $m>2$ become large at least to the order of $ν^{-κ_{n,m}}$ with $κ_{n,m}>0$, on time intervals of order $\mathcal{O}(\frac{1}ν)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源