论文标题

3D重力的路径积分附近极端性;或者,JT重力有缺陷为基质积分

The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral

论文作者

Maxfield, Henry, Turiaci, Gustavo J.

论文摘要

我们建议,一类新拓扑,没有经典的解决方案,应包括三维纯重力的路径积分中,并且它们的包容性解决了频谱中的病理否定性,从而用BTZ极端界限的非扰动转移代替它们。我们认为,使用尺寸降低理论的二维计算捕获了几乎极端极限的主要效果。为了提出这一论点,我们研究了具有动态缺陷的Jackiw-teitelboim重力的密切相关的二维理论。我们表明,该理论等同于矩阵积分。

We propose that a class of new topologies, for which there is no classical solution, should be included in the path integral of three-dimensional pure gravity, and that their inclusion solves pathological negativities in the spectrum, replacing them with a nonperturbative shift of the BTZ extremality bound. We argue that a two-dimensional calculation using a dimensionally reduced theory captures the leading effects in the near extremal limit. To make this argument, we study a closely related two-dimensional theory of Jackiw-Teitelboim gravity with dynamical defects. We show that this theory is equivalent to a matrix integral.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源