论文标题

具有差异性变异自动编码器,具有术语梯度聚合

Differentially Private Variational Autoencoders with Term-wise Gradient Aggregation

论文作者

Takahashi, Tsubasa, Takagi, Shun, Ono, Hajime, Komatsu, Tatsuya

论文摘要

本文研究了如何在不同的隐私限制下学习各种差异的变异自动编码器。我们经常建立一个具有适当先验分布的VAE,以描述学习表示的所需属性,并引入差异作为正规化术语,以将其关闭到先验。使用差异私有SGD(DP-SGD),该SGD通过注入根据梯度的灵敏度设计的专用噪声来随机梯度随机,我们可以轻松地构建差异化的私有模型。但是,我们透露,附着几个分歧在批量大小的方面增加了从O(1)到O(b)的灵敏度。这会导致注射大量的噪音,从而难以学习。为了解决上述问题,我们提出了术语DP-SGD,该术语以两种不同的方式来制作随机梯度,以量身定制损失条款的组成。术语dp-sgd术语即使连接发散时,也可以保持敏感性。因此,我们可以减少噪音的量。在我们的实验中,我们证明了我们的方法与两对先前的分布和差异都很好。

This paper studies how to learn variational autoencoders with a variety of divergences under differential privacy constraints. We often build a VAE with an appropriate prior distribution to describe the desired properties of the learned representations and introduce a divergence as a regularization term to close the representations to the prior. Using differentially private SGD (DP-SGD), which randomizes a stochastic gradient by injecting a dedicated noise designed according to the gradient's sensitivity, we can easily build a differentially private model. However, we reveal that attaching several divergences increase the sensitivity from O(1) to O(B) in terms of batch size B. That results in injecting a vast amount of noise that makes it hard to learn. To solve the above issue, we propose term-wise DP-SGD that crafts randomized gradients in two different ways tailored to the compositions of the loss terms. The term-wise DP-SGD keeps the sensitivity at O(1) even when attaching the divergence. We can therefore reduce the amount of noise. In our experiments, we demonstrate that our method works well with two pairs of the prior distribution and the divergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源