论文标题
某些浅水模型的保守数量,延续和紧凑的解决方案
Conserved quantities, continuation and compactly supported solutions of some shallow water models
论文作者
论文摘要
呈现出(1+1)时空的开放式(1+1)时空的强大解决方案消失的强大解决方案的强大解决方案是相同的。为了做到这一点,我们使用基于保守量的方程式的几何方法来证明其解决方案的独特延续结果。我们表明,这个想法可以应用于Camassa-Holm类型的大型方程式。
A proof that strong solutions of the Dullin-Gottwald-Holm equation vanishing on an open set of the (1+1) space-time are identically zero is presented. In order to do it, we use a geometrical approach based on the conserved quantities of the equation to prove a unique continuation result for its solutions. We show that this idea can be applied to a large class of equations of the Camassa-Holm type.