论文标题

用于求解稀疏多项式系统的复曲面特征值方法

Toric Eigenvalue Methods for Solving Sparse Polynomial Systems

论文作者

Bender, Matías R., Telen, Simon

论文摘要

我们考虑了计算零维的零级副本的均匀坐标的问题。我们的起点是$ x $的Cox环中的一个均匀的理想$ i $,实际上,这可能是由于稀疏多项式系统均质而产生的。我们证明了在感谢您的紧凑型环境中的一种新的特征值定理,这导致了一种新颖的,可靠的数值方法来解决此问题。我们的方法特别适用于具有任意多重性的隔离解决方案的系统。这取决于$ i $的多面规律性属性。我们研究这些属性,并在$ i $是完整的交叉点时就矩阵出现的矩阵大小提供界限。

We consider the problem of computing homogeneous coordinates of points in a zero-dimensional subscheme of a compact, complex toric variety $X$. Our starting point is a homogeneous ideal $I$ in the Cox ring of $X$, which in practice might arise from homogenizing a sparse polynomial system. We prove a new eigenvalue theorem in the toric compact setting, which leads to a novel, robust numerical approach for solving this problem. Our method works in particular for systems having isolated solutions with arbitrary multiplicities. It depends on the multigraded regularity properties of $I$. We study these properties and provide bounds on the size of the matrices appearing in our approach when $I$ is a complete intersection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源