论文标题

捕获VAE中的标签特征

Capturing Label Characteristics in VAEs

论文作者

Joy, Tom, Schmon, Sebastian M., Torr, Philip H. S., Siddharth, N., Rainforth, Tom

论文摘要

我们提出了一种将标签纳入VAE中的原则方法,该方法捕获了与这些标签相关的丰富特征信息。虽然先前的工作通常通过学习与标签值直接对应的潜在变量将这些变量混为一谈,但我们认为这与潜在的vaes捕获丰富的标签特征在潜伏的vaes捕获富含标签的特征中的预期效果相反。例如,我们可能想捕获使它看起来年轻的面孔的特征,而不仅仅是人的年龄。为此,我们开发了CCVAE,这是一种新型的VAE模型和伴随的变分目标,该物镜在潜在空间中明确捕获标签特征,从而避免了标签值和潜伏期之间的直接对应关系。通过明智的构造这种特征潜在和标签之间的映射,我们表明CCVAE可以有效地了解各种监督方案中感兴趣的特征的有意义的表示。特别是,我们表明CCVAE允许执行更有效,更一般的干预措施,例如给定标签的特征中的平滑遍历,多样化的条件生成以及跨数据点的传输特性。

We present a principled approach to incorporating labels in VAEs that captures the rich characteristic information associated with those labels. While prior work has typically conflated these by learning latent variables that directly correspond to label values, we argue this is contrary to the intended effect of supervision in VAEs-capturing rich label characteristics with the latents. For example, we may want to capture the characteristics of a face that make it look young, rather than just the age of the person. To this end, we develop the CCVAE, a novel VAE model and concomitant variational objective which captures label characteristics explicitly in the latent space, eschewing direct correspondences between label values and latents. Through judicious structuring of mappings between such characteristic latents and labels, we show that the CCVAE can effectively learn meaningful representations of the characteristics of interest across a variety of supervision schemes. In particular, we show that the CCVAE allows for more effective and more general interventions to be performed, such as smooth traversals within the characteristics for a given label, diverse conditional generation, and transferring characteristics across datapoints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源