论文标题
在Dedekind域中的Lucas和Lehmer序列上
On the Lucas and Lehmer sequences in Dedekind domains
论文作者
论文摘要
在本文中,我们首先在Dedekind域中获得了Lucas和Lehmer序列的强大划分性能,然后建立Zsigmondy定理的类似物,以及在功能场中此类序列的原始除数结果。
In this paper, we first obtain the strong divisibility property for the Lucas and Lehmer sequences in Dedekind domains, and then establish analogues of Zsigmondy's theorem and the primitive divisor results for such sequences in function fields.