论文标题

临界点通过函数的数值反转计算

Critical Point Calculations by Numerical Inversion of Functions

论文作者

Parajara, C. N., Platt, G. M., Neto, F. D. Moura, Escobar, M., Libotte, G. B.

论文摘要

在这项工作中,我们根据Heidemann和Khalil(1980)的制定,提出了一种新的方法来解决关键点计算问题。这导致了温度和摩尔体积的非线性代数方程式的$ 2 \ times 2 $系统,这可以通过适应了Malta,Saldanha和Tomei(1993)提出的功能反转技术,从而使混合物的关键点的关键点可以预测混合物的关键点。将结果与三种方法获得的结果进行了比较:($ i $)Heidemann和Khalil(1980)的经典方法,该方法在温度和摩尔体积方面也使用了双环结构; ($ ii $)Dimitrakopoulos,Jia and Li(2014)的算法,该算法采用了牛顿算法的抑制作用和($ iii $)基于Nichita and Gomez(2010)提出的方法,该方法是基于随机算法的。所提出的方法在关键点的预测中被证明是鲁棒和准确的,并且提供了对非线性问题的全球视图。

In this work, we propose a new approach to the problem of critical point calculation, based on the formulation of Heidemann and Khalil (1980). This leads to a $2 \times 2$ system of nonlinear algebraic equations in temperature and molar volume, which makes possible the prediction of critical points of the mixture through an adaptation of the technique of inversion of functions from the plane to the plane, proposed by Malta, Saldanha, and Tomei (1993). The results are compared to those obtained by three methodologies: ($i$) the classical method of Heidemann and Khalil (1980), which uses a double-loop structure, also in terms of temperature and molar volume; ($ii$) the algorithm of Dimitrakopoulos, Jia, and Li (2014), which employs a damped Newton algorithm and ($iii$) the methodology proposed by Nichita and Gomez (2010), based on a stochastic algorithm. The proposed methodology proves to be robust and accurate in the prediction of critical points, as well as provides a global view of the nonlinear problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源