论文标题

在牛顿后用二元脉冲星进行保护法的测试

Tests of conservation laws in post-Newtonian gravity with binary pulsars

论文作者

Miao, Xueli, Zhao, Junjie, Shao, Lijing, Wex, Norbert, Kramer, Michael, Ma, Bo-Qiang

论文摘要

一般相对论是一种完全保守的理论,但还有其他可能的重力理论。我们认为具有参数化的纽顿后(PPN)参数的非保守性持续性,$ζ_2$。非零$ζ_2$为偏心二进制PULSAR系统的质量中心引起了自我加速,这有助于脉冲星旋转频率的第二次导数,即$ \ddotν$。在我们的工作中,使用Will中的方法(1992),我们提供了改进的分析,并使用四个恰当的,精心挑选的二元脉冲星进行了改进。此外,我们扩展了Will的方法,并得出了$ζ_2$对自旋频率第三次导数的影响,$ \dddotν$。对于PSR B1913+16,来自$ \dddotν$的约束甚至比$ \ddotν$更紧密。我们将多个脉冲星与贝叶斯推理相结合,并获得上限,$ \ left |ζ_{2} \ right | <1.3 \ times10^{ - 5} $在95%的置信度下,假设在$ \ log_ {10} \ left | ζ_{2} \ right | $。它改善了现有的三倍。此外,我们提出了$ζ_2$的分析时间形式主义。我们使用简化假设的模拟到达时间显示了二进制脉冲星在限制$ζ_{2} $方面的能力,并提取了有用的线索,以便将来用于实际数据分析。特别是,我们发现,对于PSRS B1913+16和J0737 $ - $ 3039A,$ \dddotν$比$ \ddotν$产生更多的约束限制。

General relativity is a fully conservative theory, but there exist other possible metric theories of gravity. We consider non-conservative ones with a parameterized post-Newtonian (PPN) parameter, $ζ_2$. A non-zero $ζ_2$ induces a self-acceleration for the center of mass of an eccentric binary pulsar system, which contributes to the second time derivative of the pulsar spin frequency, $\ddotν$. In our work, using the method in Will (1992), we provide an improved analysis with four well-timed, carefully-chosen binary pulsars. In addition, we extend Will's method and derive $ζ_2$'s effect on the third time derivative of the spin frequency, $\dddotν$. For PSR B1913+16, the constraint from $\dddotν$ is even tighter than that from $\ddotν$. We combine multiple pulsars with Bayesian inference, and obtain an upper limit, $\left|ζ_{2}\right|<1.3\times10^{-5}$ at 95% confidence level, assuming a flat prior in $\log_{10} \left| ζ_{2}\right|$. It improves the existing bound by a factor of three. Moreover, we propose an analytical timing formalism for $ζ_2$. Our simulated times of arrival with simplified assumptions show binary pulsars' capability in limiting $ζ_{2}$, and useful clues are extracted for real data analysis in future. In particular, we discover that for PSRs B1913+16 and J0737$-$3039A, $\dddotν$ can yield more constraining limits than $\ddotν$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源